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Humans are very adept at extracting the “gist” of a scene in a
fraction of a second. We have found that radiologists can discrim-
inate normal from abnormal mammograms at above-chance levels
after a half-second viewing (d′∼ 1) but are at chance in localizing
the abnormality. This pattern of results suggests that they are
detecting a global signal of abnormality. What are the stimulus
properties that might support this ability? We investigated the
nature of the gist signal in four experiments by asking radiologists
to make detection and localization responses about briefly pre-
sented mammograms in which the spatial frequency, symmetry,
and/or size of the images was manipulated. We show that the
signal is stronger in the higher spatial frequencies. Performance
does not depend on detection of breaks in the normal symmetry
of left and right breasts. Moreover, above-chance classification is
possible using images from the normal breast of a patient with
overt signs of cancer only in the other breast. Some signal is pre-
sent in the portions of the parenchyma (breast tissue) that do not
contain a lesion or that are in the contralateral breast. This signal
does not appear to be a simple assessment of breast density but
rather the detection of the abnormal gist may be based on a
widely distributed image statistic, learned by experts. The finding
that a global signal, related to disease, can be detected in paren-
chyma that does not contain a lesion has implications for improv-
ing breast cancer detection.

gist processing | medical image perception | attention | mammography

Rapid extraction of scene “gist” (1–4) is a very useful aspect of
routine visual perception that allows us to allocate our time

and attention intelligently when confronted with new visual in-
formation (Can I find food here? Is there danger here?). The
signals that we extract on our first glimpse of a scene are im-
perfect but not random. Experts often anecdotally report gist-
like experiences with complex images in their domain of expertise.
For instance, we have shown that radiologists can distinguish nor-
mal from abnormal mammograms at above-chance levels in as little
as a quarter of a second, whereas nonexperts cannot (5). The gist
of abnormality appears to be a global signal. Radiologists can
detect it but cannot even crudely localize the abnormality under
these conditions.
Detecting the gist of breast cancer might be more than a cu-

riosity, if that signal could be used to improve performance in
breast cancer screening. Screening mammography can reduce mor-
tality through early diagnosis of disease (6). Breast cancer is the most
prevalent cancer in women and is the second leading cause of cancer
deaths in women (7). In North America, screening mammography
has a false negative rate of 20 to 30% (8, 9) and a recall rate of about
10% (10). With a disease prevalence of about 0.3% (11), the vast
majority of those recalled will not have cancer. Thus, there is
significant room for improvement.
It has been argued for many years that an initial, global pro-

cessing step is an important component in expert medical image

perception that might constrain or filter subsequent search (12–
15), with the two most prominent models (16, 17) each placing
great emphasis on experts’ ability to process and evaluate in-
formation from large regions of an image (18). These models are
broadly consistent with two-stage models of visual search (19,
20), developed in the basic vision literature that propose that
there is a limited set of features that can be used to guide
attention and subsequent serial stage that allows for “binding”
of features to permit identification of objects. Global processing of
scene gist is a component of a recent modification of this class of
model (21). This formulation proposes there is a selective pathway
that can be used to recognize one (or a very few) objects at a time.
Access to this limited-capacity process is controlled by attention
and the deployment of attention is guided by the basic features,
mentioned above. There is also a nonselective pathway, capable of
rapid extraction of “global image statistics” like the average ori-
entation of a set of line segments or the average size of objects (22–
24). Perhaps more interestingly, the distribution of basic features,
the “spatial envelope” (25, 26), contains information that allows for
semantic categorization of scenes (e.g., natural vs. urban) without
the need to recognize specific objects in the scene.
It is important not to oversell the capabilities of the non-

selective pathway. It is engaged in global processing and cannot
reliably recognize specific objects. Moreover, the discrimina-
tions made on the basis of a first glimpse, while not random, are
typically far from perfect. Returning to mammography, Evans
et al. (5) found that, although experts could classify mammograms
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as normal or abnormal at above-chance levels, they were at chance
in their ability to localize abnormalities. Nevertheless, mammo-
grams appear to contain a signal indicating abnormality. This
profile of image statistics or global properties might guide at-
tention or, at least, might alert the radiologist to the possible
presence of an abnormality in a mammogram.
In this paper, we investigate the nature of this global signal in

the hope that the signal could be better exploited by radiologists or
used by designers of computer-aided detection (CAD) systems to
improve breast cancer screening. Our results show that the signal
is concentrated in the high spatial frequencies of the image. It is
not based on symmetry between two breasts or density of the
breasts. Finally, the signal is detectable in breast tissue away from
the location of the actual abnormality, including in the contra-
lateral breast. In each of four experiments, we presented experi-
enced radiologists with unilateral or bilateral mammograms
[craniocaudal (CC) or mediolateral oblique (MLO) views of both
breasts] or sections of mammograms for 500 ms (allowing for,
perhaps, two volitional fixations). The stimuli were followed by a
mask (a white outline of the breasts). Observers rated each stim-
ulus on a scale from 0 (certainly recall this patient) to 100 (cer-
tainly normal) (Fig. 1). If the stimulus was a full breast or pair of
breast images, observers were asked to localize the abnormality on
an outline of that breast image. We also obtained density ratings
from other radiologists for the mammogram stimulus set used in
the experiments (full methods are presented in Methods).

Results
Experiment 1. Experiment 1 asked if the abnormality signal was
based on a disruption in the usual bilateral symmetry of the
breasts. Studies have noted that asymmetry can be a strong in-
dicator for developing breast cancer (27, 28). Indeed, research
has suggested that bilateral mammographic density asymmetry
could be a significantly stronger risk factor for breast cancer
development in the near-term than either woman’s age or mean
mammographic density (29).
We measured observers’ ratings of abnormality to three types

of images: (i) baseline, both breasts from the same woman;
(ii) asymmetry 1, breast images from two different women (on
positive/abnormal trials, one breast image was abnormal, whereas
the other was a normal image from another woman); and
(iii) asymmetry 2, breasts are from two different women (on
positive trials, one breast image was abnormal with a lesion,
whereas the other image came from the breast contralateral to

a lesion in another woman) (Fig. 2). d′, the signal detection
measure of performance, is calculated by comparing ratings of
the abnormal condition to the ratings of the otherwise equiv-
alent normal condition. When both breasts came from the
same woman, expert radiologists could reliably exceed chance
performance [average d′ = 1.14, t(13) = 8.69, P < 0.0001].
When the two breast images came from two different women,
radiologists could still perform the task [average d′ = 0.66, t(13) =
6.28, P < 0.0001], although their performance was significantly
worse than when both breasts were from the same woman
[planned comparison, t(13) = 7.03, P = 0.018). When the abnor-
mal case consists of one breast with an abnormality and the other
breast was the breast contralateral to the lesion from a different
woman, again, radiologists could do the task [average d′ = 0.40,
t(13) = 3.02, P < 0.00097], but their performance was weaker
than the performance in the condition where both breasts were
from the same woman (P = 0.054). Performance did not differ
significantly between the two asymmetric conditions (P > 0.05).
We can conclude from these results that symmetry may be part
of what allows an expert to distinguish a normal from abnormal
case in a glance, but it is not required because there is above-
chance performance in the artificial, asymmetric conditions.
Although participants could detect the presence of abnor-

mality, they could not localize that abnormality when it was present
(Fig. S1). Localization performance was not significantly differ-
ent from chance. Localization was best for the baseline condition
(21%), but still not above chance performance [t(13) = 1.38, P =
0.196]. In addition, as shown in Evans et al. (5), localization per-
formance did not improve as the confidence rating increased.
Is the signal of abnormality simply breast density, with dense

breasts rated as more abnormal? In the baseline condition, d′
was significantly better [t(13) = 6.93, P < 0.0001] than the d′
derived from density estimates made by other radiologists. In
the asymmetry conditions, the observed d′ was not significantly
better than d′ derived from density rating [t(13) = 1.84, P = 0.089;
t(13) = 0.48, P = 0.647]. However, if observers were basing their
abnormality ratings on an assessment of density, one would expect
that the gist and density ratings would be correlated, which they
are not (r = 0.02). One might also expect a difference in density
ratings between normal and abnormal images. However, there is no
reliable difference in this image set. A one-way ANOVA on density
rating revealed no effect of image type [F(4,115) = 1.55, P = 0.19],
whereas a one-way ANOVA revealed a large effect of image type
on abnormality rating [F(4,115) = 18.5, P < 0.0001]. Thus, although
the magnitude of the effect in the asymmetrical cases is similar to

Fig. 1. Experimental procedure for experiments 1–4. Experiment 2 just
showed a unilateral breast image, and experiment 4 used only a piece of the
breast image.

Fig. 2. Receiver operating characteristic (ROC) curves for the three conditions
of experiment 1. Solid colored line, average ROC curve; light dotted lines, in-
dividual observers; dark dotted line, hypothetical ROC curve if judgments were
based on density ratings. (A) Images of two breasts from the same woman. One
breast abnormal on the positive trials. d′ = 1.14 compared with d′ = 0.18 derived
from the density ratings. (B) Images from two different women, one image
abnormal on the positive trials, and the other, always drawn from a negative
case. d′ = 0.66 compared with d′ = 0.47 derived from the density ratings. (C)
Images from two different women, one image abnormal on the positive trials,
and the other image was the breast contralateral to a lesion in another woman.
d′ = 0.40 compared with d′ = 0.34 derived from the density ratings.
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what could be obtained from a quick assessment of density, there is
no evidence that density is the signal that was being used by our
observers. Absence of evidence is not proof and it might be that
a more statistically powerful experiment might show a rela-
tionship of perceived density and the gist of abnormality (e.g.,
an experiment with density and abnormality ratings made by
the same observers). A different, perhaps simpler, way to test
the symmetry question and to revisit the density question is to
present radiologists with only brief presentation of a single breast
image at one time, rather than with a paired viewing of the left
and right breasts. That is the purpose of experiment 2.

Experiment 2. Participants rated the appearance of single breast
images. In addition to determining whether observers can dis-
criminate between normal and abnormal images in the absence
of any possible symmetry signal, testing on single breast mam-
mograms made it possible to assess whether the breast contra-
lateral to an abnormal breast could be discriminated from
breasts from negative cases. The left panel of Fig. 3 shows that
observers were able to distinguish between images of single
normal and abnormal breasts [d′ = 1.16; t(14) = 8.35, P <
0.0001]. What is more, as shown in the right panel of Fig. 3, their
performance remained above chance when distinguishing normal
from an image contralateral to the breast with a lesion [d′ = 0.59;
t(14) = 8.35, P < 0.0001], although performance in that condition
is significantly worse than performance with abnormal images
[paired t(14) = 5.8, P = 0.00004]. As in experiment 1, the weaker
performance, obtained with images contralateral to the lesion,
was of a magnitude similar to what would be obtained if ob-
servers based their ratings on breast density. However, as in
experiment 1, there is no evidence that the radiologists were
using that density signal. As before, the relationship of density
ratings to abnormality ratings was weak or nonexistent (r = 0.06
for ratings and density across images and r = −0.02 for the
contralateral images alone). Further, there was no effect of the
objective type of image (normal vs. abnormal) on density ratings
[F(4,115) = 0.71, P = 0.49], but there was a large effect of image
type on abnormality ratings [F(4,115) = 46.06, P < 0.0001]. As in
experiment 1, the average localization performance of observers
for images with the abnormality in a single breast was not sig-
nificantly above chance level [t(14) = 0.91, P = 0.378].

Experiment 3. Any texture can be decomposed into a set of sinu-
soidal gratings of different spatial frequencies, amplitudes, orien-
tations, and phases. Experiment 3 examined the spatial frequency
composition of the signal of abnormality. Radiologists viewed
normal and abnormal, bilateral mammograms in each of three
counterbalanced conditions: unfiltered full images equivalent to

the baseline condition of experiment 1 and high-pass filtered im-
ages and low-pass filtered images shown as in Fig. 4A. There was a
significant difference between conditions [F(2,16) = 52.35, P <
0.0001]. Specifically, the signal for interpreting mammogra-
phy in 500 ms resides far more strongly in the high spatial fre-
quencies, suggesting that the information is present in some
aspect of the finer detail of the parenchymal texture (Fig. 4B).
High-pass performance was reliably greater than chance [d′ =
0.97; t(8) = 8.05, P < 0.0001] and better than performance on low-
pass images [low-pass d′ = 0.26, paired t test, t(8) = 5.30, P =
0.002]. High-pass performance did not differ from performance
with unfiltered images [d′ = 0.97 vs. 1.06, t(8) = 0.61, P = 0.56].
Again, the rated density of the images cannot explain radiolo-

gists’ performance in any of the three conditions. The derived d′
from the average density rating was d′ = 0.09 and that is signifi-
cantly lower than the performance for unfiltered images [d′= 1.06,
t(8) = 8.81, P < 0.0001], high-pass images [d′ = 0.97, t(8) = 7.43,
P < 0.0001], or low-pass images (d′ = 0.26, t(8) = 6.00, P < 0.0003].
None of the correlations of image density and image abnormality
rating were significant [all F(1,53) < 2.2, all P > 0.14].
These findings are interesting for at least two reasons. First, if

radiologists were simply using density as the signal, one might
expect better performance from low spatial frequencies. Second,
outside of radiology, the more typical finding in the appreciation
of scene gist is that it is the low spatial frequency content that can
be appreciated first in a brief flash; not the higher frequencies,
although 500 ms would be long enough to appreciate both low
and high frequencies in a typical scene gist experiment (30). Be-
cause localization performance remained poor across all condi-
tions [best for high-pass filtered images but still not above chance,
t(8) = 0.86, P = 0.414; Fig. S2], we conclude that it is not a specific
detail of the lesion that is supporting the decision but rather, ab-
normality is judged based on some aspect of the overall texture
that is best visualized in the higher spatial frequencies. Perhaps the
signal is related to processes that create indications of disease like

Fig. 3. ROC curves for single breast image data. Light dashed lines are in-
dividual observer data. The solid line shows the average data, and the dark
dashed line shows the ROC curve that can be derived from the density data.

A

B

Fig. 4. (A) Example images used in experiment 3. (a) Unfiltered, (b) low-pass
filtered, and (c) high-pass filtered views of a breast stimulus. (B) ROC curves
for the three conditions of experiment 3. Solid colored lines, average ROC
curves; dashed lines, individual observers. (a) Baseline, unfiltered/intact im-
ages. (b) Low-pass filtered images. (c) High-pass filtered images.
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spicules that might be enhanced in a high-pass view, but a larger
dataset would be needed to test such a hypothesis.

Experiment 4. If the signal of abnormality is present throughout
the parenchyma as would be predicted if that signal is truly a
global signal, then it follows that a signal should be found in
isolated regions of the breast that deliberately exclude the lesion.
Alternatively, even though radiologists cannot explicitly localize
abnormalities after a 500-ms flash, the signal might still arise
exclusively from some small portion of the breast rather than
being distributed widely. To test that hypothesis, in experiment 4,
we presented 256- × 256-pixel patches of mammograms and
asked radiologists to distinguish between normal and three types
of potentially abnormal patches: patches containing the lesion,
lesion-free patches from the abnormal breast, and lesion-free
patches from the breast contralateral to the lesion. Observer’s
performance differed significantly between the three types of
samples [F(2, 20) = 109.14, P < 0.0001). However, all three types
of patches from abnormal cases could be distinguished from nor-
mal at above-chance levels. This significant difference can be seen
by noting that virtually all of the individual observer data lies above
the main diagonal, chance line in Fig. 5. Performance on sections
with the lesions was significantly better than patches without the
lesion from either the ipsilateral (P < 0.0001) or contralateral
breast (P < 0.0001). Performance on ipsilateral and contralateral
patches without a visible lesion did not differ (P = 0.473). The
density estimates, made by other radiologists for these small
patches, produce area under the ROC curve (AUC) between 0.47
and 0.49, essentially at the 0.5 (chance) level. Apparently, there is
no signal in the density ratings for these small patches of breast
parenchyma. There was no difference between the average density
ratings for the different types of sections [F(3,196) = 0.09, P = 0.97],
and the density ratings were not significantly correlated with the
abnormality ratings (all r < 0.05, all P > 0.12).
These results provide interesting insight into the signal sup-

porting radiologists’ performance in these tasks. Unsurprisingly,
when the section includes the lesion, attention will be directed to
the lesion, and performance is better than if the radiologist is
looking at the entire breast with the lesion in an unknown lo-
cation. Of more interest, there is some signal in sections of pa-
renchyma ipsilateral and contralateral to the lesion. The signal is
weak (Fig. 5, conditions B and C), corresponding to d′ values of
only 0.33–0.40 in the sections that did not include the lesion.
However, note that the patches show only about one-eighth of a
single breast. If we model the whole breast as consisting of eight
independent samples with d′ = 0.33–0.40, performance for a
presentation of the whole breast would yield d′ between 0.9 and
1.2. This modeled whole breast d′ is comparable to or somewhat
higher than the d′ for whole breasts in experiments 1–3. If results

from the whole breast are actually worse than would be predicted
from small patches, that suggests that the signals combined across
the whole breast are not entirely independent. In any case, the local
signal is in principle, strong enough to support the results obtained
with whole breasts, when combined across the whole breast.

Discussion
Radiologists report anecdotally that some images seem to be
“bad” when they first appear, before any specific pathology is
localized. No one would suggest that diagnosis should be based
on these first glimpses. However, there is now a body of research,
including the work reported here, that indicates that this sense of
the gist of a medical image can be based on a measurable signal
(5, 12, 15). Our goal, in the present paper, has been to investigate
the nature of the signal that allows expert observers to classify
mammograms as normal or abnormal at above chance levels
after a brief exposure. Experiments 1 and 2 undermined the hy-
pothesis that observers were responding to a break in the normal
rough symmetry between left and right breasts. In experiment 1,
the symmetry was disrupted, and in experiment 2, observers only
viewed a single breast image. In both cases, comparing normal and
abnormal images, it remains possible to perform the classification
task with a d′ a bit better than 1.0. Although radiologists may use
symmetry between two breasts as an important sign in normal
mammography, it is not the signal that allows for classification of
mammograms after a half-second of exposure.
Localization performance was consistently poor, suggesting

that classification is based on a global signal, spread across the
breast. The first interesting finding in this paper is the evidence
in experiment 2 that this signal is present in the breast contra-
lateral to the breast containing the abnormality. Experiment 4
found evidence for the signal in sections of parenchyma that did
not contain an abnormality, regardless of whether they came
from the ipsilateral or contralateral breast. Performance with
these small sections is about what one would expect if the signal
were being pooled across the entire image when the entire image
is present. This finding may have clinical significance in the light
of recent evidence that women with false-positive screening
mammograms were at an increased risk of developing breast
cancer compared with those with true negatives (31). Perhaps,
even if localized signs of cancer were not unambiguously visible at
the initial screening, radiologists still may have been influenced by
the global signal of abnormality that we are studying here.
Experiment 3 provides another interesting finding: that the

signal for abnormality is far stronger in a high-pass filtered mam-
mogram than in a low-pass filtered image. Given prior results on
recognition of briefly presented images (e.g., the global-local effect)
(32, 33), one might have expected some sort of advantage for the
coarser information in the low-pass image. Instead, we found the
information about abnormality resides in the higher frequencies.
It is worth noting that the ability to detect abnormality at

above-chance levels is a learned skill of expert radiologists. In
previous work (5), we had nonexperts attempt the task. They
performed at chance levels. It would be interesting to know if
general radiologists who read fewer mammograms are able to
detect this global signal of abnormality.
A distributed global signal of abnormality in breast cancer

might be a useful component in a CAD system (34). The normal
goal of a CAD system is to direct the radiologist’s attention to
specific, suspicious locations. Although these systems perform at
a level comparable to that of an expert radiologist, they have not
been hugely successful in clinical practice (35), in part because
the positive predictive value of any given CAD mark is very low
in a mammography screening situation where the prevalence of
disease is low. As a result, radiologists tend to dismiss the correct
CAD marks when they occur (36). It is possible that the signal
that supports classification in the experiments reported here,
could be used as an additional piece of information for a CAD

Fig. 5. ROC curves for the three conditions of experiment 4. Solid colored
lines, average ROC curves; dashed lines, individual observers. (Left) Abnor-
mal section contains lesion, d′ = 1.47 (99.9% CI, 1.20–2.12). (Middle) Ab-
normal section ipsilateral to lesion, d′ = 0.33 (99.9% CI, 0.17–0.49). (Right)
Abnormal section contralateral to lesion, d′ = 0.40 (99.9% CI, 0.21–0.58). In
all cases, the hit rate is derived from sections taken from a normal case.
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system. A CAD mark in the presence of a global abnormality
signal might be a more suspicious mark than one in the absence
of the signal. The presence of the signal in the breast contra-
lateral to the abnormality also raises an interesting clinical pos-
sibility. It may be that the signal is present before the actual
lesion appears. If so, it could be used as a warning sign, sug-
gesting greater vigilance much as breast density is used as risk
factor today (37). In thinking about any of these possibilities, it is
critical to remember that radiologists’ ability to detect abnor-
mality in half a second is probabilistic. They perform above
chance but far from perfect and far from their performance
under normal conditions of reading mammograms. The gist
signal might be useful, but, by itself, it is nowhere near definitive.
In conclusion, there is a global signal that can be measured by
asking radiologists to classify mammograms in a fraction of a
second. That signal is probably the basis of the initial “holistic”
impression of an image that is thought to guide radiologists when
they view images in a normal, clinical setting (12, 38). If properly
quantified, it could also be a component of automated aids
to mammography.

Methods
Participants. All study participants were attending radiologists specializing in
breast imaging. Across the four studies, we tested 49 radiologists: experiment
1, 14 radiologists (11 female, 3 male; average age, 53 y), average 19 y in
practice (range, 4–34 y) reading, on average, 7,650 cases in the last year
(range, 6,000–10,000); experiment 2, 15 radiologists (12 female, 3 male;
average age, 49 y), average 19 y in practice (range, 10–35 y), reading, on
average, 7,280 cases in the last year (range, 3,000–15,000); experiment 3, 9
radiologists (5 female, 4 male; average age, 50 y), average 15 y in practice
(range, 7–39 y), reading, on average, 7,100 cases in the last year (range,
4,000–10,000); and experiment 4, 11 radiologists (10 female, 1 male; average
age, 52 y), average 20 y in practice (range, 4–34 y), reading, on average,
7,800 cases in the last year (range, 6,000–10,000). The radiologists who
participated in experiments 1, 2, and 4 were recruited from five National
Health Service (NHS) Hospital Trusts in Yorkshire and Cambria, UK. In ex-
periment 3, radiologists were recruited from University of Texas MD
Anderson Cancer Center (Houston). All of the participants had normal or
corrected-to-normal vision and gave informed consent. The experiments had
institutional review board approval from University of York, University of
Texas MD Anderson Cancer Center, and the NHS Hospital Trusts.

Stimuli and Materials. The stimuli used in the four experiments were derived
from 120 bilateral full-field digital mammograms. The starting resolution of
the two mammograms side by side was 1,980 × 2,294 pixels. These bilateral
mammograms were then downsized to fit on a monitor with a resolution of
1,920 × 1,080. Mammograms were acquired from anonymized cases from
Brigham and Women’s Hospital (Boston). All of the cases included at least
four images (left and right breast MLO views and CC views). Half of the cases
showed cancerous abnormalities, whereas the rest were normal. Abnormal
cases were either screen-detected cancers, histologically verified, or mam-
mograms that had been done 1–2 y before a screen-detected cancer and
that had been interpreted as negative but later retroactively determined by
a study radiologist to have contained visible abnormalities. The abnormali-
ties demonstrated on mammograms were “subtle” masses and architectural
distortions. Lesion subtlety was determined by the study radiologists based
on their experience. We did not include calcifications or more obvious can-
cers as it is of less interest to show that a stimulus like a bright white spot can
be detected in less than a second. The average size of the lesions in the test
set mammograms was 18 mm (range, 10–48 mm).

Experiments 1 and 3 used all of the 120 bilateral mammograms. For ex-
periment 3, these original images were Fourier transformed, and two types of
filtered images were computed. A low-pass image was created by removing
all of the information above two cycles per degree (at a 57-cm viewing
distance), leaving only the low spatial frequencies of the original image. A
high-pass image was created by removing information that was below six
cycles per degree, leaving only the high spatial frequency information of the
original images. Application of Fourier transform of images resulted in three
sets of images: original intact images, the same images but with only low
spatial frequency information present, and images with only the high spatial
frequency information present.

In experiment 2,weused 120 unilateral breasts, taken from the bilateral full-
field digital mammograms used in experiment 1. A third of the single

mammograms had a confirmed yet subtle abnormality (e.g., mass or archi-
tectural distortion), another thirdwas taken fromcompletely normal cases, and
the last third was mammograms of breasts that contained no abnormality but
that were the breast contralateral to a breast containing an abnormality.

The stimuli used in experiment 4 consisted of 200 sections taken from the
original full-field digital mammograms (including both CC and MLO views).
Mammogram sections were cropped to 256 × 256 pixels using Photoshop CS6
(Adobe). A quarter of the sections included a lesion, centered in the patch.
There were three types of no lesion sections: (i) section taken from the
image of an abnormal breast but not containing the lesion, (ii) section taken
from the breast contralateral to a breast containing a lesion, and (iii) section
taken from a completely normal case.

Two of the authors (T.M.H. and J.C.), who are practicing radiologists,
provided density ratings for each left and right mammographic image for all
of the images in the stimulus set on a four-point scale (1, fatty; 2, scattered
fibroglandular; 3, heterogeneously dense; 4, extremely dense). The density
ratings of the two radiologists were significantly correlated for both breasts
(left breast: r = 0.56, P < 0.00001; right breast: r = 0.43, P < 0.00001). Rated
density of abnormal cases was slightly higher than for normal [2.80 vs. 2.65,
but not significantly, one-tailed t test t(188) = 1.64, P = 0.101). If classifica-
tion of normal vs. abnormal was based on the average density ratings given
by the two radiologists, the predicted d′ would be 0.26. The density ratings
of the two radiologists for the single breast subset of stimuli used in ex-
periment 2 were also significantly correlated (r = 0.36, P < 0.0001). The
density raters also gave a density rating for the four types of section we used
in experiment 4. A one-way independent ANOVA on the average density
rating revealed no significant main effect of type of section [F(1,199) = 0.86,
P = 0.968]. Thus, there was no significant difference in the density rating of
the four types of small section.

Experiments 1, 2, and 4 were conducted on a Macintosh MacBook Pro using
MATLAB R2012b. All observers viewed the experiment on a 27.5-in, liquid-
crystal color screen with a 1,920 × 1,080 resolution, a usable intensity range of
2–260 candelas per square meter, a contrast ratio of 188:1, and a refresh rate
of 144 Hz at a viewing distance of 57 cm. Experiment 3 was conducted on a
Dell Precision M6500 laptop using MATLAB R2012b. The experiment was dis-
played on a 17-in. Screen at a viewing distance of 57 cm. The display monitor
had a resolution of 1,920 × 1,200 (Dell) and a refresh rate of 85 Hz.

Procedure. Across the study, all four experiments used the same experimental
paradigm of brief stimuli presentation. All observers in each experiment
viewed the same images, with the order randomized across trials. After three
to six practice trials, depending on the experiment, each trial consisted of the
following sequence of events. First, a fixation cross appeared in the center of
the screen for 500 ms. The fixation cross display was followed by the brief
500-ms presentation of a pair of mammograms (experiments 1 and 3), side by
side; a single mammogram (experiment 2); or a single section (experiment 4).
After the brief presentation, observers saw a white outline of the previously
presented breasts (experiments 1–3) or a white noise mask for another
500 ms (experiment 4). In experiments 1–3, even if they did not think the
case was abnormal, radiologists were asked to indicate the most likely lo-
cation of an abnormality with a mouse click on the display screen. Following
this, observers were asked to provide a 0–100 rating (where 0 stands for
clearly abnormal) scale how likely it was that there was an abnormality.
Feedback was provided only for the initial practice trials. All of the observers
were alone when performing the experiment.

In experiment 1, participants completed 120 trials across five possible trial
types: (i) the two breasts were from the same woman, one breast with an
abnormality, one normal (20 trials); (ii) the two breasts were from two dif-
ferent women, one breast with an abnormality, the other normal and from
a completely normal case (20 trials); (iii) the two breasts were from different
women, one with an abnormality, the other normal but from an abnormal
case (20 trials); (iv) the two breasts were from the same woman: both breasts
normal (30 trials); and (v) finally, the two breasts were from different
women, both breasts and both cases completely normal (30 trials). Thus,
overall, half of the cases were normal and half were abnormal. These five
types of presentation were used to create the three comparisons described
in the results. A comparison of conditions i and iv replicates the previous
work on detection of the gist of abnormality (baseline). Comparisons of
conditions ii and iii with condition v (asymmetry 1 and 2) test for the pres-
ence of a nonselective, gist signal when a symmetry cue cannot be used.

In experiment 2, participants completed 120 trials evenly divided between
images of three types of breast: normal, abnormal, and contralateral (being
the normal breast contralateral to an abnormal breast).

In experiment 3, participants completed three blocks of 120 trials, for a
total of 360 experimental trials in which they viewed CC or MLO views of
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mammograms. In each block, the observers saw only one set of images: the
original intact image set, the low spatial frequency image set, or the high
spatial frequency image set. The viewing order of the blocks was counter-
balanced across observers.

In experiment 4, observers completed two blocks of 100 experimental trials
each in which they viewed sections of mammograms evenly divided between
the four types described above.

Data Analysis.
Assessing detection performance. The observers in all four experiments gave
confidence ratings on a scale from 0 (clearly abnormal) to 100 (clearly
normal). For a given rating threshold, scores above that rating can be
considered true negatives, if the stimulus is normal and miss or false-
negative errors if the stimulus is abnormal. Scores below the level are
deemed hits or true positives, if the case is abnormal and false alarm or
false-positive errors if the case is normal. Categorizing responses in this
manner for a range of values sweeps out a ROC curve. Thus, signal detection
measures of d′, criterion, and AUC can be derived. For purposes of cal-
culating d′, we used a rating threshold of 50.

The analysis of experiment 1 is somewhat complicated because there are
three types of abnormal cases (trial types i, ii, and iii) and two types of
normal cases (trial types iv and v). For each of the three critical comparisons
of normal and abnormal, the hit rate is derived from one of the three ab-
normal conditions, and the false alarm rate is derived from one of the two
normal conditions. When the abnormal cases are those in which left and
right images were from the same woman (trial type i), the false alarm rate is
derived from the normal cases in which left and right images are also from
one woman (trial type iv). When the abnormal cases are those in which the
left and right images are taken from the mammograms of different women
(trial types ii and iii), the normal cases are, likewise, taken from cases in
which the left and right images come from different women (trial type v).

For experiments 2 and 4, the average d′ and ROC curves were created by
taking the false alarm rates from the single breast or sections taken from

normal breasts and pairing them with the hit rate from each of the two po-
tentially abnormal conditions in experiment 2 or three potentially abnormal
conditions in experiment 4.
Calculating density d′. A value of d′ can also be calculated from the average
density ratings using the same method as described above for the abnor-
mality rating. Breast density was rated on a four-point scale from 1 = fatty
to 4 = extremely dense. For normal images, using a threshold of 2.5, if
the density rating was above threshold, that rating would be categorized as
a false positive. If it was below, it was deemed to be a true negative. For
abnormal mammograms, if the density rating was above the 2.5 cutoff, then
it was categorized as a hit; if below, it was a miss. We used values above
threshold as the analog of target present (abnormal) response because
previous research has found that increased density is associated with higher
likelihood of cancer (29).
Assessing localization performance. To assess localization performance the
observers were asked to click on an outline mask of the breast to indicate
where they thought an abnormality was most likely to have been located.
Localization performance was measured by determining what percentage
of observers’ clicks fell into the predetermined regions of interest (ROIs)
centered on abnormalities. We then calculated the percentage of cor-
rectly localized abnormalities in respect to the overall number of ab-
normalities. Chance levels for localization performance were determined
as average percentage of the breast encompassed by the ROI (abnormal
region). Different abnormal cases would have larger or smaller ROIs.
Averaged across cases with lesions, the ROI area was 18% in experi-
ment 1; experiment 2 = 6%; experiment 3 = 16%. These values then re-
present the chance of hitting an ROI by placing a random mark on the
breast outline.
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